Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 6969, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-37117441

RESUMO

This prospective study assessed the exposure to phthalates of preterm neonates who received total parenteral nutrition (TPN) during their stay in the neonatal intensive care unit (NICU) and the risk of neurodevelopment delays at the age of 2 months. Our study recruited 33 preterm neonates who required TPN upon NICU admission. Urine samples for analyzing phthalate metabolites were obtained at admission and then daily until the last day of receiving TPN. Phthalates in the daily TPN received by the preterm neonates were analyzed. The neurodevelopment of the neonates was assessed using the Ages and Stages Questionnaire Edition 3 (ASQ-3). Diethyl phthalate and butyl benzyl phthalate were found in all TPN samples, while 27% and 83% contained dibutyl phthalate and di-(2-ethylhexyl) phthalate (DEHP), respectively. Yet, the daily dose of each phthalate that our preterm neonates received from TPN was much lower than the recommended tolerable limit. Urinary levels of monobenzyl phthalate and four metabolites of DEHP [i.e., mono-(2-ethylhexyl) phthalate (MEHP), mono-(2-ethyl-5-hydroxyhexyl) phthalate, mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP)] and the sum of four DEHP metabolites (∑4DEHP) increased significantly in preterm neonates before discharge. However, these levels were not correlated with their phthalate parent compounds in TPN, suggesting other sources of exposure in the NICU. At 2 months, we found that urinary levels of mono-iso-butyl phthalate (MiBP), MECPP, MEHP, and ∑4DEHP were inversely related to fine motor skills. After adjusting for head circumference, the inverse relationships remained significant, suggesting direct effects from phthalates. Given the extreme vulnerability of our population, it is critical to minimize exposure to phthalates during their NICU stay.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Recém-Nascido , Humanos , Lactente , Exposição Ambiental , Dietilexilftalato/toxicidade , Estudos Prospectivos , Ácidos Ftálicos/metabolismo , Nutrição Parenteral Total , Poluentes Ambientais/metabolismo
2.
Int J Hyg Environ Health ; 248: 114112, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36657281

RESUMO

Phthalates are widely used plasticizers in various consumer products and medical devices, with some reporting as having estrogenic and anti-androgenic endocrine-disrupting effects. Premature neonates may be exposed to high levels of specific phthalates during hospitalization in the neonatal intensive care unit (NICU) because of reliance on multiple medical procedures that pose a possible health risk. The present study utilized seven urinary phthalate metabolites of dibutyl phthalate isomers [(di-n-butyl phthalate (DnBP) and diisobutyl phthalate (DiBP)], butylbenzyl phthalate (BBzP), and di(2-ethylhexyl) phthalate (DEHP) that had been previously measured in 33 preterm neonates sampled at hospital admission (N = 23) and daily during their NICU stay (N = 260). We aimed to perform: (1) cumulative risk assessment (CRA) using the volume and creatinine-adjusted models; (2) examine the temporal variability of CRA from repeated measures and (3) estimate the risk of cumulative exposure to phthalates based on their anti-androgenic and/or estrogenic properties. We multiplied the relative activity of individual phthalates exhibiting estrogenic or anti-androgenic effects by daily intake. For each preterm neonate, CRA was assessed based on the hazard index (HI) metric [the sum of hazard quotients] based on three reference doses for anti-androgenicity: the tolerable daily intake (TDI) from the European Food Safety Authority, the reference dose (RfD-AA) published in 2010 and newly revised published in 2020 (NRfD-AA). The metabolites of BBzP and DEHP were 2-23 fold higher in preterm neonates during their NICU stay. Median HIs increased in the order of HINRfDAA > HIRfDAA > HITDI. In the creatinine-based model, 87% (92%), 87% (96%), and 100% (100%) of preterm neonates at admission (during NICU stay) showed HITDI, HIRfD-AA, and HINRfD-AA exceeding 1, respectively with DEHP the most prevalent. The temporal reproducibility of HI (based on three reference doses) during preterm neonate stay in the NICU was high, with intra-class correlation coefficients ranging between 0.77 and 0.97, suggesting persistent exposure to phthalates. The four phthalates that preterm neonates were exposed to in the NICU exhibited estrogenic binding and anti-androgenic effects with median values (creatinine-based) of 98.7 and 56.9 µg/kg body weight/day, respectively. This was especially true for DEHP. The results indicate that preterm neonates in this NICU setting are probably at high risk of cumulative phthalate exposure with anti-androgenic properties that may have long-term adverse reproductive and developmental effects.


Assuntos
Dietilexilftalato , Poluentes Ambientais , Ácidos Ftálicos , Recém-Nascido , Humanos , Exposição Ambiental/análise , Poluentes Ambientais/urina , Dietilexilftalato/urina , Creatinina , Reprodutibilidade dos Testes , Ácidos Ftálicos/urina , Medição de Risco , Antagonistas de Androgênios
3.
Biometals ; 35(1): 125-145, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34993712

RESUMO

The role of micronutrient deficiency in the pathogenesis of COVID-19 has been reviewed in the literature; however, the data are limited and conflicting. This study investigated the association between the status of essential metals, vitamins, and antioxidant enzyme activities in COVID-19 patients and disease severity. We recruited 155 patients, who were grouped into four classes based on the Adults guideline for the Management of Coronavirus Disease 2019 at King Faisal Specialist & Research Centre (KFSH&RC): asymptomatic (N = 16), mild (N = 49), moderate (N = 68), and severe (N = 22). We measured serum levels of copper (Cu), zinc (Zn), selenium (Se), vitamin D3, vitamin A, vitamin E, total antioxidant capacity, and superoxide dismutase (SOD). Among the patients, 30%, 25%, 37%, and 68% were deficient in Se (< 70.08 µg/L), Zn (< 0.693 µg/mL), vitamin A (< 0.343 µg/mL), and vitamin D3 (< 20.05 µg/L), respectively, and SOD activity was low. Among the patients, 28% had elevated Cu levels (> 1.401 µg/mL, KFSH&RC upper reference limit). Multiple regression analysis revealed an 18% decrease in Se levels in patients with severe symptoms, which increased to 30% after adjusting the model for inflammatory markers. Regardless of inflammation, Se was independently associated with COVID-19 severity. In contrast, a 50% increase in Cu levels was associated with disease severity only after adjusting for C-reactive protein, reflecting its possible inflammatory and pro-oxidant role in COVID-19 pathogenesis. We noted an imbalance in the ratio between Cu and Zn, with ~ 83% of patients having a Cu/Zn ratio > 1, which is an indicator of inflammation. Cu-to-Zn ratio increased to 45% in patients with mild symptoms and 34%-36% in patients with moderate symptoms compared to asymptomatic patients. These relationships were only obtained when one of the laboratory parameters (lymphocyte or monocyte) or inflammatory markers (neutrophil-to-lymphocyte ratio) was included in the regression model. These findings suggest that Cu/Zn might further exacerbate inflammation in COVID-19 patients and might be synergistically associated with disease severity. A 23% decrease in vitamin A was seen in patients with severe symptoms, which disappeared after adjusting for inflammatory markers. This finding may highlight the potential role of inflammation in mediating the relationship between COVID-19 severity and vitamin A levels. Despite our patients' low status of Zn, vitamin D3, and antioxidant enzyme (SOD), there is no evidence of their role in COVID-19 progression. Our findings reinforce that deficiency or excess of certain micronutrients plays a role in the pathogenesis of COVID-19. More studies are required to support our results.


Assuntos
COVID-19/sangue , Cobre/sangue , SARS-CoV-2/patogenicidade , Selênio/sangue , Zinco/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Assintomáticas , Proteína C-Reativa/metabolismo , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Contagem de Células , Colecalciferol/sangue , Humanos , Linfócitos/imunologia , Linfócitos/virologia , Pessoa de Meia-Idade , Monócitos/imunologia , Monócitos/virologia , Neutrófilos/imunologia , Neutrófilos/virologia , Análise de Regressão , SARS-CoV-2/crescimento & desenvolvimento , Índice de Gravidade de Doença , Superóxido Dismutase/sangue , Vitamina A/sangue , Vitamina E/sangue
4.
Environ Res ; 195: 110882, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33621597

RESUMO

Phthalates are the most ubiquitous contaminants that we are exposed to daily due to their wide use as plasticizers in various consumer products. A few studies have suggested that in utero exposure to phthalates can disturb fetal growth and development in humans, because phthalates can interfere with endocrine function. We collected spot urine samples from 291 pregnant women in their first trimester (9.8 ± 2.3 gestational weeks) recruited in an ongoing prospective cohort study in Saudi Arabia. A second urine sample was collected within 1-7 d after enrollment. The aims of this study were to: (1) assess the extent of exposure to phthalates during the first trimester and (2) estimate the risk from single and cumulative exposures to phthalates. Most phthalate metabolites' urinary levels were high, several-fold higher than those reported in relevant studies from other countries. The highest median levels of monoethyl phthalate, mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), and mono-(2-ethylhexyl) phthalate (MEHP) in µg/l (µg/g creatinine) were 245.62 (197.23), 114.26 (99.45), 39.59 (34.02), and 23.51 (19.92), respectively. The MEHP levels were highest among three di (2-ethylhexyl) phthalate (DEHP) metabolites. %MEHP4, the ratio of MEHP to four di (2-ethylhexyl) phthalate metabolites (∑4DEHP), was 44%, indicating interindividual differences in metabolism and excretion. The hazard quotient (HQ) of individual phthalates estimated based on the reference dose (RfD) of the U.S. Environmental Protection Agency indicated that 58% (volume-based) and 37% (creatinine-based) of the women were at risk of exposure to ∑4DEHP (HQ > 1). Based on the tolerable daily intake (TDI) from the European Food Safety Authority, 35/12% (volume-/creatinine-based data) of the women were at risk of exposure to two dibutyl phthalate (∑DBP) metabolites (MiBP and MnBP). The cumulative risk was assessed using the hazard index (HI), the sum of HQs of all phthalates. The percentages of women (volume-/creatinine-based data) at health risks with an HI > 1 were 64/40% and 42/22% based on RfD and TDI, respectively. In view of these indices for assessing risk, our results for the anti-androgenic effects of exposing pregnant women to ∑4DEHP and ∑DBP early during pregnancy are alarming.


Assuntos
Transtorno Autístico , Poluentes Ambientais , Ácidos Ftálicos , Exposição Ambiental/análise , Poluentes Ambientais/toxicidade , Feminino , Humanos , Ácidos Ftálicos/toxicidade , Gravidez , Primeiro Trimestre da Gravidez , Estudos Prospectivos , Arábia Saudita/epidemiologia
5.
Int J Hyg Environ Health ; 230: 113629, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32956901

RESUMO

This follow-up study of 82 children investigated the potential impact of early and recent exposure to mercury and lead on their neurodevelopmental performance at 5-8 years of age (2017-2018). Early exposure of these children to mercury, methylmercury, and lead was assessed during lactation at 3-12 months old, as well as their mother's exposure using measurements from a cross-sectional study (2011-2013). Only infants who failed to pass the neurodevelopment screening tools and/or had elevated mercury were included in this study. Urine and hair were sampled during the follow-up study to assess the children's recent exposure to mercury, methylmercury, and lead. Their cognitive performance and visual-motor integration were also measured using the Test of Non-Verbal Intelligence (TONI) and the Beery-Visual-Motor Integration (Beery VMI), respectively. The association between alterations in urinary porphyrins excretion and exposure to metals was analyzed and their influence on the children's neurodevelopment was explored. Linear regression models revealed a significant negative association between the infants' mercury exposure during lactation and the TONI Quotient (ß = -0.298, 95%CI = -4.677, -0.414) and Beery VMI Age Equivalent scores at age 5-8 (ß = -0.437, 95%CI = -6.383, -1.844). The mothers' blood methylmercury was inversely and significantly associated with their children's TONI Quotient (ß = -0.231, 95%CI = -8.184, -0.331). In contrast, the children's Beery VMI Age Equivalent scores were positively and significantly associated with the hair methylmercury of the mothers (ß = 0.214, 95%CI = 0.088, 3.899) and their infants (ß = 0.256, 95%CI = 0.396, 4.488). These relationships suggest the presence of negative confounding that we did not take into account. Unlike mercury, there was some evidence that lead in breast milk had an inverse relationship with the children's visual-motor coordination skills. Our study did not show a clear association between children's recent exposure to metals and neurodevelopment. However, a significant inverse association was observed between the TONI Quotient and the interaction of hair methylmercury × ∑porphyrins (ß = -0.224, 95%CI = -0.86, -0.049), implying that porphyrins are a sensitive measure of low body-mercury burden. Although lead induced higher ∑porphyrins excretion in urine (ß = 0.347, 95%CI = 0.107, 0.525), their interaction did not influence children's neurodevelopmental scores. The interactions between metals and porphyrins might provide insights into their potential contributory role in the pathogenesis associated with neurological disorders or other diseases. Despite the small sample size of the present study, its findings about the association between toxic metal exposure and the high risk of poor neurodevelopmental performance are worrying, particularly at an early age, and additional research is needed using larger sample sizes.


Assuntos
Mercúrio , Criança , Desenvolvimento Infantil , Pré-Escolar , Estudos Transversais , Feminino , Seguimentos , Humanos , Lactente , Lactação , Chumbo
6.
Chemosphere ; 249: 126153, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32058129

RESUMO

In this study, we determined DNA damage and chromosome breakage (indicators of genotoxicity) and cell viability (an indicator of cytotoxicity) in human lymphoblastoid TK6 and Chinese hamster ovary (CHO) cells treated with 33 e-liquids using in vitro single cell gel (comet), micronucleus (MN), and trypan blue assays, respectively. We also measured the contents of nicotine, five phthalate esters, and DL-menthol in the e-liquids to examine their effects on DNA damage, chromosome breakage, and cell viability. Our chemical analyses showed that: (1) six e-liquids had nicotine ≥2-fold higher than the manufacture's label claim (2-3.5 mg); (2) both dimethyl- and dibutyl-phthalate levels were >0.1 µg/g, i.e., their threshold limits as additives in cosmetics; and (3) the DL-menthol contents ranged from 0.0003 to 85757.2 µg/g, with those of two e-liquids being >1 mg/g, the threshold limit for trigging sensory irritation. Though all the e-liquids induced DNA damage in TK6 cells, 20 resulted in cell viabilities ≤75%, indicating cytotoxicity, yet the inverse relationship between cell viability and DNA damage (r = -0.628, p = 0.003) might reflect their role as pro-apoptotic and DNA damage inducers. Fifteen e-liquids induced MN% in TK6 cells ≥3-fold that of untreated cells. Some of the increase in %MN might be false due to high cytotoxicity, yet six brands showed acceptable cell viabilities (59-71%), indicating chromosome damage. DNA damage and %MN increased when the TK6 cells were exposed to metabolic activation. The CHO cells were less sensitive to the genotoxic effects of the e-liquids than the TK6 cells. DL-menthol was found to be associated with decreased cell viability and increased DNA damage, even at low levels. We cannot dismiss the presence of other ingredients in e-liquids with cytotoxic/genotoxic properties since out of the 63 different flavors, 47 induced DNA damage (≥3-folds), and 26 reduced cell viability (≤75%) in TK6 cells.


Assuntos
Vapor do Cigarro Eletrônico/química , Ácidos Ftálicos/química , Animais , Células CHO , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Cricetulus , Dano ao DNA , Dibutilftalato/farmacologia , Vapor do Cigarro Eletrônico/análise , Vapor do Cigarro Eletrônico/toxicidade , Ésteres/química , Humanos , Mentol/química , Mentol/toxicidade , Testes para Micronúcleos/métodos , Nicotina/química , Nicotina/toxicidade
7.
Environ Res ; 176: 108562, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31280027

RESUMO

A total of 206 lactating mothers and their infants (3-12 months) were included in this study to evaluate postnatal exposure to neurotoxic pollutants such as methylmercury (MeHg), lead (Pb), manganese (Mn), dichlorodiphenyltrichloroethane (DDT) and its metabolites [dichlorodiphenyldichloroethane (DDD), and dichlorodiphenyldichloroethylene (DDE)] and their association with delayed neurological development and to explore the protective role of selenium (Se) against chemical neurotoxicity. Neurodevelopmental performance was evaluated using Denver Developmental Screening Test II and Parents' Evaluation of Developmental Status (PEDS). Multivariate log-binomial regression modeling was applied for both single and multiple exposures to chemicals using a principal component analysis that generated six principal components. Both mothers and their infants had been exposed to metals and DDT metabolites, with some exceeding the accepted permissible limits. The geometric means of MeHg, Pb, Mn, DDD, DDE and DDT levels in breast milk were 1.333, 45.327, 15.576, 0.069, 0.542 and 1.08 µg/l, respectively. A single-exposure model identified a high risk of reduced PEDS performance significantly associated with DDD in breast milk [relative risk (RR) = 1.484; 95% confidence interval (95%CI) = 1.091-2.019] and marginally significantly associated with Pb in the mothers' blood (RR = 2.164; 95%CI = 0.87-5.382). We did not find a protective role of Se in neurodevelopment due to its high levels in the mothers. Models of multi-chemical exposure indicated that Mn in blood and breast milk, Se in blood and Pb in the mothers' urine were marginally significantly associated with a high risk of reduced PEDS performance (RR = 0.424; 95%CI = 0.176-1.022). The use of multi-chemical exposure approach in early life risk assessments is important because it indicates real-world exposure. Our results were not conclusive because the sample size was small, so future studies examining the implications to health of the impact of prenatal/postnatal exposure to a mixture of chemicals in the Saudi population are merited.


Assuntos
DDT/toxicidade , Metais/toxicidade , Leite Humano/metabolismo , Substâncias Protetoras/metabolismo , Selênio/metabolismo , Feminino , Humanos , Lactente , Lactação , Chumbo/toxicidade , Manganês/toxicidade , Compostos de Metilmercúrio/toxicidade , Mães , Gravidez
8.
Int J Hyg Environ Health ; 220(8): 1252-1278, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28869188

RESUMO

Exposure to heavy metals can cause renal injury, which has been well documented in occupational exposure. Studies of low exposure in the general population, however, are still scarce, particularly for vulnerable populations such as mothers and young children. This study evaluated exposure to heavy metals, and biomarkers of renal function and oxidative stress in 944 lactating mothers and their infants and investigated the role of the interaction between heavy metals and oxidative stress in altering renal function. Mother and infant urine samples were analyzed to measure mercury (Hg), cadmium (Cd), and lead (Pb) concentrations for determining body-burden exposure; N-acetyl-ß-d-glucosaminidase (NAG), α1-microglobulin (α1-MG), albumin (ALB), and creatinine (Cr) concentrations for determining early renal injury; and 8-hydroxy-2-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) concentrations for determining oxidative stress. The median concentrclearlyations in mothers presented as µg/g Cr (infants as µg/l) for Hg, Cd, and Pb were 0.695 (0.716), 0.322 (0.343), and 3.97 (5.306) respectively. The mothers and their infants had clearly been exposed to heavy metals and had levels higher than the reference values reported for the general populations of USA, Germany, and Canada. Multiple regression analyses clearly demonstrated associations between urinary heavy metals in quartiles and several renal and oxidative biomarkers in mothers and to a lesser extent their infants. ß coefficients for urinary excretions of MDA, 8-OHdG, ALB, α1-MG, NAG, and Cr in mothers were high in the highest quartile of Hg (1.183-51.29µg/g Cr or 1.732-106.95µg/l), Cd (0.565-765.776µg/g Cr or 0.785-1347.0µg/l), and Pb (6.606-83.937µg/g Cr or 9.459-80.826µg/l), except Pb was not associated with ALB. Infants in the highest Pb quartile (9.293-263.098µg/l) had the highest ß coefficients of urinary excretion of MDA, 8-OHdG, ALB, NAG, and Cr. Significant increasing trend in biomarkers across the quartiles of the three metals was seen in both mothers and infants (ptrend <0.001). A receiver operating characteristic analysis supported the predictive abilities of the four renal biomarkers in discriminating between low versus high metal quartiles. The interaction between heavy metals and oxidative stress contributed to the high excretions of renal biomarkers, but the mechanism remains unclear. These findings add to the limited evidence that low exposure to heavy metals in the general population is associated with alterations in renal function that could eventually progress to renal damage if exposure continues and that children are more susceptible due to the immaturity of their body organs.


Assuntos
Cádmio/urina , Poluentes Ambientais/urina , Chumbo/urina , Mercúrio/urina , 8-Hidroxi-2'-Desoxiguanosina , Acetilglucosaminidase/urina , Adolescente , Adulto , Albuminúria , alfa-Globulinas/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Exposição Ambiental , Monitoramento Ambiental , Humanos , Lactente , Malondialdeído/urina , Pessoa de Meia-Idade , Mães , Estresse Oxidativo , Medição de Risco , Arábia Saudita , Adulto Jovem
9.
Sci Total Environ ; 578: 440-451, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836348

RESUMO

Plasticizers such as phthalate esters (PAEs) and bisphenol A (BPA) are highly persistent organic pollutants that tend to bio-accumulate in humans through the soil-plant-animal food chain. Some studies have reported the potential carcinogenic and teratogenic effects in addition to their estrogenic activities. Water resources are scarce in Saudi Arabia, and several wastewater treatment plants (WTPs) have been constructed for agricultural and industrial use. This study was designed to: (1) measure the concentrations of BPA and six PAEs, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP) and dioctyl phthalate (DOP), in secondary- and tertiary-treated wastewater collected from five WTPs in three Saudi cities for four to five weeks and (2) test their potential genotoxicity. Three genotoxicological parameters were used: % tail DNA (%T), tail moment (TM) and percentage micronuclei (%MN). Both DBP and DEHP were detected in all treated wastewater samples. DMP, DEP, BBP, DOP, and BPA were found in 83.3, 84.2, 79, 73.7 and 97.4% of the samples, respectively. The levels of DMP (p<0.001), DOP (p<0.001) and BPA (p=0.001) were higher in tertiary- treated wastewater than secondary-treated wastewater, perhaps due to the influence of the molecular weight and polarity of the chemicals. Both weekly sampling frequency and WTP locations significantly affected the variability in our data. Treated wastewater from Wadi Al-Araj was able to induce DNA damage (%T and TM) in human lymphoblastoid TK6 cells that was statistically higher than wastewater from all other WTPs and in untreated TK6 cells (negative control). %MN in samples from both Wadi Al-Araj and Manfouah did not differ statistically but was significantly higher than in the untreated TK6 cells. This study also showed that the samples of tertiary-treated wastewater had a higher genotoxicological potential to induce DNA damage than the samples of secondary-treated wastewater. BPA and some PAEs in the treated wastewater might have the potential to induce genetic damage, despite their low levels. Genotoxicity, however, may also have been due to the presence of other contaminants. Our preliminary findings should be of concern to Saudi agriculture because long-term irrigation with treated wastewater could lead to the accumulation of PAEs and BPA in the soil and ultimately reach the human and animal food chain. WTPs need to remove pollutants more efficiently. Until then, a cautious use of treated wastewater for irrigation is recommended to avoid serious health impacts on local populations.


Assuntos
Compostos Benzidrílicos/análise , Fenóis/análise , Ácidos Ftálicos/análise , Águas Residuárias/química , Purificação da Água , Linhagem Celular , Cidades , Ensaio Cometa , Dano ao DNA , Dibutilftalato , Ésteres , Humanos , Arábia Saudita
10.
Int J Hyg Environ Health ; 219(8): 898-914, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27453562

RESUMO

This study examined the role of oxidative stress due to mercury (Hg) exposure on infant's neurodevelopmental performance. A total of 944 healthy Saudi mothers and their respective infants (aged 3-12 months) were recruited from 57 Primary Health Care Centers in Riyadh City. Total mercury (Hg) was measured in mothers and infants urine and hair samples, as well as mother's blood and breast milk. Methylmercury (MeHg) was determined in the mothers and infants' hair and mother's blood. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and porphyrins were used to assess oxidative stress. The infant's neurodevelopment was evaluated using Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status. The median total Hg levels in mother's urine, infant's urine, mother's hair, infant's hair, and mother's blood and breast milk were 0.995µg/l, 0.716µg/l, 0.118µg/g dw, 0.101µg/g dw, 0.635µg/l, and 0.884µg/l respectively. The median MeHg levels in mother's hair, infant's hair, and mother's blood were 0.132µg/g dw, 0.091µg/g dw, and 2.341µg/l respectively. A significant interrelationship between mothers and infants Hg measures in various matrices was noted. This suggests that mother's exposure to different forms of Hg (total and/or MeHg) from various sources contributed significantly to the metal body burden of their respective infants. Even though Hg exposure was low, it induced high oxidative stress in mothers and infants. The influence of multiplicative interaction terms between Hg measures and oxidative stress biomarkers was tested using multiple regression analysis. Significant interactions between the urinary Hg levels in mothers and infants and oxidative stress biomarkers (8-OHdG and MDA) were noted. The MeHg levels in mother-infant hair revealed similar interaction patterns. The p-values for both were below 0.001. These observations suggest that the exposure of our infants to Hg via mothers either during pregnancy and/or neonatal life, promoted oxidative stress that might have played a role in infant neurodevelopmental delays that we reported previously. The results confirmed that the interaction between infant's MeHg in hair and 8-OHdG and MDA levels was significantly associated with a delay in DDST-II performance (ß=-0.188, p=0.028). This finding provides an insight into the potential consequences of Hg-induced oxidative stress to infant's cognitive neurodevelopment for the first time. This observation still needs future studies to be validated. Given the low MeHg levels in our population, these findings are of particular importance.


Assuntos
Desenvolvimento Infantil , Poluentes Ambientais/análise , Compostos de Metilmercúrio/análise , Sistema Nervoso/crescimento & desenvolvimento , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Adulto , Biomarcadores/análise , Biomarcadores/sangue , Biomarcadores/urina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Monitoramento Ambiental , Poluentes Ambientais/sangue , Poluentes Ambientais/urina , Feminino , Cabelo/química , Humanos , Lactente , Masculino , Malondialdeído/urina , Exposição Materna , Mercúrio/análise , Mercúrio/sangue , Mercúrio/urina , Compostos de Metilmercúrio/sangue , Leite Humano/química , Mães , Porfirinas/urina , Gravidez , Arábia Saudita , Adulto Jovem
11.
Environ Sci Pollut Res Int ; 23(1): 455-68, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26310707

RESUMO

In the last few years, the use of phthalates in perfumes has gained attention because these chemicals are sometimes added intentionally as a solvent and a fixative. Five phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), and diethyl hexyl phthalate (DEHP), were measured in 47 branded perfumes using headspace solid phase microextraction (SPME) followed by gas chromatography-mass spectrometry (GC-MS). The results revealed considerable amounts of phthalate in all 47 brands with detection frequencies > limit of quantitation in the following order: DEP (47/47) > DMP (47/47) > BBP (47/47) > DEHP (46/47) > DBP (23/45). Of the 47 brands, 68.1, 72.3, 85.1, 36.2, and 6.7 % had DEP, DMP, BBP, DEHP, and DBP levels, respectively, above their reported threshold limits. Of these phthalates, DEP was found to have the highest mean value (1621.625 ppm) and a maximum of 23,649.247 ppm. The use of DEP in the perfume industry is not restricted because it does not pose any known health risks for humans. DMP had the second highest level detected in the perfumes, with a mean value of 30.202 ppm and a maximum of 405.235 ppm. Although DMP may have some uses in cosmetics, it is not as commonly used as DEP, and again, there are no restrictions on its use. The levels of BBP were also high, with a mean value of 8.446 ppm and a maximum of 186.770 ppm. Although the EU banned the use of BBP in cosmetics, 27 of the tested perfumes had BBP levels above the threshold limit of 0.1 ppm. The mean value of DEHP found in this study was 5.962 ppm, and a maximum was 147.536 ppm. In spite of its prohibition by the EU, 7/28 perfumes manufactured in European countries had DEHP levels above the threshold limit of 1 ppm. The DBP levels were generally low, with a mean value of 0.0305 ppm and a maximum value of 0.594 ppm. The EU banned the use of DBP in cosmetics; however, we found three brands that were above the threshold limit of 0.1 ppm, and all were manufactured in European countries. The results of this study are alarming and definitely need to be brought to the attention of the public and health regulators. Although some phthalate compounds are still used in cosmetics, many scientists and environmental activists have argued that phthalates are endocrine-disrupting chemicals that have not been yet proven to be safe for any use, including cosmetics. Phthalates may also have different degrees of estrogenic modes of action. Furthermore, we should not dismiss the widespread use of phthalates in everyday products and exposure to these chemicals from sources such as food, medications, and other personal care products.


Assuntos
Ésteres/química , Perfumes/química , Ácidos Ftálicos/química , Disruptores Endócrinos/química , Disruptores Endócrinos/isolamento & purificação , Ésteres/isolamento & purificação , Europa (Continente) , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Perfumes/isolamento & purificação , Ácidos Ftálicos/isolamento & purificação , Microextração em Fase Sólida
12.
Int J Hyg Environ Health ; 219(1): 129-41, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26541552

RESUMO

This cross-sectional study analyzed mercury (Hg) levels in healthy Saudi mothers and their infants (age 3-12 months) and examined the influence of Hg on the infants' neurodevelopment using screening tools, such as the Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status (PEDS). A total of 944 mothers and their 944 infants were recruited from 57 Primary Health Care Centers (PHCCs) in Riyadh. The total Hg (THg) levels were measured in the mothers' and infants' urine (UTHg-M and UTHg-I) and hair (HTHg-M and HTHg-I) samples and in the breast milk and mothers' blood. Methylmercury (MeHg) levels were determined in hair samples from the mothers (MeHg-M) and infants (MeHg-I). Only 40.1% of the infants were breast-fed when enrolled, and 59.9% had stopped breastfeeding. Only 1.8% of the mothers and 0.3% of the infants had MeHg levels above the Environmental Proection Agency (EPA) reference dose (1 µg/g), with low medians of 0.132 and 0.091 µg/g dw, respectively, but the MeHg levels were significantly associated with infant DDST-II performance. The levels of corrected UTHg-M for creatinine (Cr), HTHg-M, HTHg-I, and HMeHg-M, however, displayed an association with infant PEDS performance. The medians and percentage of the tested population that exceeded the recommended limits for Hg in urine and hair set by the World Health Organization (5 µg/g Cr) and EPA (1 µg/g) were 0.695 µg/g Cr and 3% UTHg, 0.118 µg/g dw and 4.1% HTHg-M, 0.101 µg/g dw and 2.8% HTHg-I, and 0.132 µg/g dw and 1.8% HMeHg-M. Our study provides evidence of an association between some Hg measures and delays in infant neurodevelopment, despite their low levels and regardless of the infant's breastfeeding status. The results are of potential concern, because delayed psychomotor or mental performance in infants could be an indicator of later neurocognitive development in children, which may persist into adulthood, as shown in other studies. The absence of local standardization of the DDST-II and PEDS screening tools might raise some questions, although the DDST-II has been used in local institutions for a number of years. The development of effective standardized developmental screening tools is necessary to ensure that all children at risk of neurodevelopmental problems early in life are identified so that they can receive appropriate and timely intervention.


Assuntos
Aleitamento Materno , Desenvolvimento Infantil/efeitos dos fármacos , Deficiências do Desenvolvimento/etiologia , Exposição Materna/efeitos adversos , Mercúrio/efeitos adversos , Compostos de Metilmercúrio/efeitos adversos , Leite Humano/química , Adolescente , Adulto , Estudos Transversais , Monitoramento Ambiental , Feminino , Cabelo/química , Humanos , Lactente , Masculino , Mercúrio/metabolismo , Mercúrio/urina , Compostos de Metilmercúrio/metabolismo , Compostos de Metilmercúrio/urina , Pessoa de Meia-Idade , Mães , Arábia Saudita , Poluentes Químicos da Água , Adulto Jovem
13.
Environ Monit Assess ; 187(11): 678, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26450688

RESUMO

A total of 1016 healthy Saudi mothers and their respective infants (aged 3-12 months) were recruited from 57 Primary Health Care Centers (PHCCs) in Riyadh, Saudi Arabia, to evaluate the extent of mercury (Hg) exposure and predict its sources in the healthy Saudi population. Total Hg levels were measured in maternal urine, breast milk, blood, and hair and in the infants' urine and hair. Only 1.9% of the mothers had urinary Hg (UHg)>10 µg/l, the limit for asymptomatic adults recommended by the World Health Organization, but the median (0.99 µg/l) was higher than in other countries. Also, 49.3% of the mothers had UHg>1 µg/l, the German reference value for adults. Median infant UHg was 0.729 µg/l, and 77 and 93 % of the infants had levels higher than 0.4 and 0.1 µg/l, the reference values of the Centers for Disease Control and Prevention and for Germany, respectively. The median Hg level in breast milk was 0.884 µg/l. Even though 43.2% of the milk samples were above the background level for Hg in human milk (1 µg/l), our results were lower than those reported from other countries. Median maternal total Hg in blood was 0.637 µg/l, and only 0.4 and 6.9% of samples were higher than the Hg reference levels of 5.8 µg/l of the Environmental Protection Agency (EPA) and of 2 µg/l for Germany, respectively. Total Hg levels in hair (HHg) varied widely among mothers and infants, but only 3.9% of the mothers and 2.8% of the infants had HHg>1 µg/g (the EPA reference level). Median HHg values were 0.117 µg/g dry weight in mothers and 0.1 µg/g dry weight in infants; both were lower than in other countries. The Hg levels in mothers and their respective infants were relatively low, but our results were consistent with other studies indicating that dental amalgam fillings and fish consumption were the main predictors of maternal Hg exposure. Among the several biomarkers of Hg exposure, Hg levels in maternal hair and urine were the strongest predictors of infant exposure. The lack of an association between Hg in breast milk and Hg in infant urine and hair suggested that the infants were exposed to Hg predominately during pregnancy rather than during breastfeeding. We expect that our data can serve as a baseline for further biomonitoring and follow-up studies, particularly of the long-term impact of Hg on childhood neurodevelopment.


Assuntos
Exposição Materna/estatística & dados numéricos , Mercúrio/metabolismo , Adulto , Animais , Biomarcadores , Aleitamento Materno , Monitoramento Ambiental , Feminino , Peixes , Cabelo/química , Humanos , Lactente , Masculino , Mercúrio/análise , Leite Humano/química , Mães , Gravidez , Valores de Referência , Arábia Saudita , Estados Unidos , United States Environmental Protection Agency
14.
Biol Trace Elem Res ; 153(1-3): 145-54, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23661328

RESUMO

The objective of this work was to assess exposure to mercury (Hg) and its induction of oxidative stress in 155 healthy lactating Saudi mothers and their infants. Samples of breast milk and blood were collected from the mothers, while urine was taken from both infants and mothers. Both urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) and malondialdehyde (MDA) were measured in mothers and infants as biomarkers of oxidative stress. The mean concentration of Hg in breast milk was 1.19 µg/L (range 0.012-6.44 µg/L) with only one mother having Hg >4 µg/L, the upper limit established by the US Agency for Toxic Substance and Disease Registry. However, 57.4 % had Hg ≥1 µg/L, the background level for Hg in human milk. The mean urinary Hg corrected for creatinine (Hg-C) in mothers and infants was 1.47 and 7.90 µg/g creatinine, respectively, with a significant correlation between the two (p < 0.001). Urinary Hg levels over 5 µg/g creatinine (the background level in an unexposed population) were found in 3.3 % of mothers and 50.1 % of infants. None of the mothers had total blood Hg above the US Environmental Protection Agency's maximum reference dose of 5.8 µg/L. No correlation was noted between urinary Hg in infants and Hg in breast milk (p > 0.05). Hg in breast milk, though, was associated with Hg in blood (p < 0.001), suggesting the efficient transfer of Hg from blood to milk. Hg in the breast milk of mothers and in the urine of infants affected the excretion of urinary MDA and 8-OHdG, respectively, in a dose-related manner. These findings reveal for the first time lactational exposure to Hg-induced oxidative stress in breast-fed infants, which may play a role in pathogenesis, particularly during neurodevelopment. This will also contribute to the debate over the benefits of breast milk versus the adverse effects of exposure to pollutants. Nevertheless, breastfeeding should not be discouraged, but efforts should be made to identify and eliminate the source of Hg exposure in the population.


Assuntos
Mercúrio/toxicidade , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Feminino , Humanos , Lactente , Recém-Nascido , Malondialdeído/metabolismo , Gravidez
15.
Sci Total Environ ; 431: 188-96, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22683759

RESUMO

We examined the effect of mercury (Hg) associated with dental amalgam fillings on biomarkers of renal and oxidative stress in children between the ages of 5-15.5 years. Urine samples were analyzed for N-acetyl-ß-D-glucosaminidase (NAG), α(1)-microglobulin (α(1)-MG), ß(2)-microglobulin (ß(2)-MG), retinol binding protein (RBP), albumin (ALB), 8-hydroxy-2-deoxyguanosine (8-OHdG) and malondialdehyde (MDA). The level of urinary Hg (UHg-C) was calculated as µg/g creatinine. Multiple regression analyses revealed that the excretion of urinary NAG was significantly associated with the presence of dental amalgam fillings (ß=0.149, P=0.03) and the levels of UHg-C (ß=0.531, P=0), with an interaction between the two (P=0). The increase in urinary NAG in relation to UHg-C levels had a dose-effect pattern. The lowest observed effect was seen at UHg-C levels above 1.452 µg/g creatinine, which is lower than previously reported. In contrast, α(1)-MG was negatively associated with the presence of dental amalgam fillings (ß=-0.270, P=0), but positively with UHg-C levels (ß=0.393, P=0). There were 7 children without, and one child with, dental amalgam fillings with urinary α(1)-MG levels above the reference limit of >7 mg/g creatinine. Even though α(1)-MG seems to be a reliable biomarker for early changes in renal functions, it might exert its effect only at a higher level of exposure. An inverse relationship was also observed between urinary 8-OHdG levels and the presence of dental amalgam fillings. This might suggest that the dental amalgam does not increase DNA damage but reduces the capacity to repair DNA, leading to lower urinary excretion of 8-OHdG. On the other hand, we found that Hg affected the excretion of urinary 8-OHdG in a dose-related pattern that was mostly associated with long-term exposure to low Hg levels. Urinary NAG levels were positively associated with urinary MDA levels (ß=0.516, P=0) but not with 8-OHdG (ß=0.134, P=0.078) after adjustment for potential confounders. Both UHg-C and the presence of dental amalgam fillings remained predictors of the NAG model. Our data provide evidence that low exposure to Hg from dental amalgam fillings exerts an effect on kidney tubular functions in children. Oxidative stress may have played a role in this mechanism. The results of this study would also suggest that urinary NAG is the most sensitive of all the investigated renal biomarkers. These results should be confirmed with further investigation.


Assuntos
Biomarcadores/urina , Amálgama Dentário/efeitos adversos , Rim/efeitos dos fármacos , Mercúrio/efeitos adversos , Estresse Oxidativo , 8-Hidroxi-2'-Desoxiguanosina , Acetilglucosaminidase/urina , Adolescente , Albuminúria/diagnóstico , alfa-Globulinas/urina , Criança , Pré-Escolar , Desoxiguanosina/análogos & derivados , Desoxiguanosina/urina , Relação Dose-Resposta a Droga , Feminino , Humanos , Rim/metabolismo , Masculino , Malondialdeído/urina , Mercúrio/urina , Valor Preditivo dos Testes , Análise de Regressão , Proteínas de Ligação ao Retinol/urina , Microglobulina beta-2/urina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...